Image Component Library (ICL)
Classes | Public Member Functions | Static Private Member Functions | Private Attributes | List of all members
icl::math::KMeans< Vector, Scalar > Class Template Reference

Generic Implementation of the K-Means algorithm. More...

#include <KMeans.h>

Classes

struct  Result
 restult type More...
 

Public Member Functions

 KMeans (int numCenters=0)
 constructor with optionally given number of centers More...
 
void init (int numCenters)
 deferred intitialization with number of centers More...
 
int findNN (const Vector &v, Scalar &minDist)
 finds the nearest centroid for a given data pointer More...
 
template<class RandomAcessIterator >
Result apply (RandomAcessIterator begin, RandomAcessIterator end, int numSteps=1000, bool reinitCenters=true)
 runs the KMeans algorithms on the given data More...
 

Static Private Member Functions

static Scalar diff_power_two (const Scalar &a, const Scalar &b)
 internal utility function More...
 
static Scalar dist (const Vector &a, const Vector &b)
 utility function computing the vector distance More...
 
static void setVectorNull (Vector &v)
 sets a vector to null More...
 

Private Attributes

std::vector< Vector > m_centers
 internal list of centroids More...
 
std::vector< Vector > m_means
 internal buffer More...
 
std::vector< int > m_nums
 numbers of points associated to each centroid More...
 
std::vector< Scalar > m_errors
 averate quantisation error for each centroid More...
 

Detailed Description

template<class Vector, class Scalar>
class icl::math::KMeans< Vector, Scalar >

Generic Implementation of the K-Means algorithm.

The K-Means algorithms performs vector quantisation in a very simple way. Given a set of data pointers xi, and starting with a fixed given number of initial centroids, randomly drawn from the given data points, it iterates two steps:

  1. assign each data point to it's closest centroid (winnter takes all association)
  2. move centroids to the mean of it's associated data points

Vector Types

Supported Vector Types are FixedColVector, FixedRowVector, DynColVector, DynRowVector and Point32f

Constructor & Destructor Documentation

◆ KMeans()

template<class Vector , class Scalar >
icl::math::KMeans< Vector, Scalar >::KMeans ( int  numCenters = 0)
inline

constructor with optionally given number of centers

Member Function Documentation

◆ apply()

template<class Vector , class Scalar >
template<class RandomAcessIterator >
Result icl::math::KMeans< Vector, Scalar >::apply ( RandomAcessIterator  begin,
RandomAcessIterator  end,
int  numSteps = 1000,
bool  reinitCenters = true 
)
inline

runs the KMeans algorithms on the given data

if reinitCenters is set to false, the centers of the last call to this method are reused

◆ diff_power_two()

template<class Vector , class Scalar >
static Scalar icl::math::KMeans< Vector, Scalar >::diff_power_two ( const Scalar &  a,
const Scalar &  b 
)
inlinestaticprivate

internal utility function

◆ dist()

template<class Vector , class Scalar >
static Scalar icl::math::KMeans< Vector, Scalar >::dist ( const Vector &  a,
const Vector &  b 
)
inlinestaticprivate

utility function computing the vector distance

◆ findNN()

template<class Vector , class Scalar >
int icl::math::KMeans< Vector, Scalar >::findNN ( const Vector &  v,
Scalar &  minDist 
)
inline

finds the nearest centroid for a given data pointer

◆ init()

template<class Vector , class Scalar >
void icl::math::KMeans< Vector, Scalar >::init ( int  numCenters)
inline

deferred intitialization with number of centers

◆ setVectorNull()

template<class Vector , class Scalar >
static void icl::math::KMeans< Vector, Scalar >::setVectorNull ( Vector &  v)
inlinestaticprivate

sets a vector to null

Member Data Documentation

◆ m_centers

template<class Vector , class Scalar >
std::vector<Vector> icl::math::KMeans< Vector, Scalar >::m_centers
private

internal list of centroids

◆ m_errors

template<class Vector , class Scalar >
std::vector<Scalar> icl::math::KMeans< Vector, Scalar >::m_errors
private

averate quantisation error for each centroid

◆ m_means

template<class Vector , class Scalar >
std::vector<Vector> icl::math::KMeans< Vector, Scalar >::m_means
private

internal buffer

◆ m_nums

template<class Vector , class Scalar >
std::vector<int> icl::math::KMeans< Vector, Scalar >::m_nums
private

numbers of points associated to each centroid


The documentation for this class was generated from the following file: